
A Novel Secured Communication Channel Based
On Genetic Functions

Lakshmikanth Gurlanka Vasupalli Mahesh Y.Ramesh kumar

M.Tech Student Asst. Professor, Asst. Professor,
Dept of CSE, AIET Dept of CSE, AIET Dept of CSE, AIET

Abstract: In this paper an encryption and decryption
technique has been proposed and termed as A Genetic
Functions Based Cryptosystem (GFC). Initiate’s random
numbers are generated with the help of Linear Method and
Genetic Functions; CROSSOVER and MUTATION, and the
first digit of each of these numbers are taken sequentially and
stored in an array, termed as Collection Array. A block of
characters are taken as input whose ASCII values are selected
sequentially and stored in another array. Subtracting the
numbers of Collection Array from the ASCII values does the
encryption method. Applying a loop starting from ASCII
value 0 to ASCII value 255 and from these values the cipher
text is subtracted sequentially and comparing the result with
the collection array do the decryption method and then the
required ASCII value is chosen. A comparison of the proposed
technique with existing and industrially accepted RSA,Triple-
DES and AES has also been done in terms of encryption,
decryption time; frequency distribution and non-homogeneity
of source and encrypted files.

Keywords: encryption, decryption, AES algorithm,
cryptosystem, genetic functions, mutation.

1. INTRODUCTION
Information security has become a very critical aspect of
modern computing systems. With the global acceptance of
the Internet, virtually every computer in the today is
connected to every other. So at this point of time
maintaining of secrecy and security of information has
become necessity. For these reasons different types of
research works on encryption and decryption is going on so
that various algorithm are developed in this field.
Encryption is a method that converts the plain text into
non-readable one and Decryption is the method that
converts the non-readable cipher text into readable plain
text. Encryption is inversely proportional to Decryption.
Encryption and Decryption of data:
In cryptography,
Encryption: It is the process of encoding messages or
information in such a way that only authorized parties can
read it. In an encryption scheme, the message or
information, referred to as plain-text, is encrypted using an
encryption algorithm [11], turning it into an
unreadable cipher text [6].
Decryption: It is the process of decoding the data which
has been encrypted into a secret format. An authorized user
can only decrypt data because decryption requires a secret
key or password. In simple terms it is the conversion of
cipher text into plain text [6].

Figure 1: Conversion of plain text to cipher text and vice

versa

This algorithm combines the features of Genetic Functions
and Cryptography. Here we generate random numbers with
the help of genetic functions “CROSSOVER” and
“MUTATION”. The algorithm contains a key of four
parameters, for security.
Existing systems uses RSA algorithm or triple DES
algorithms.
RSA: The RSA algorithm involves three steps: key
generation, encryption and decryption.
Key generation:
RSA involves a public key and a private key. The public
key can be known to everyone and is used for encrypting
messages. Messages encrypted with the public key can only
be decrypted using the private key. The keys for the RSA
algorithm are generated the following way:
1. Choose two distinct prime numbers p and q.
2. For security purposes, the integers p and q should be

chosen at random, and should be of similar bit-length.
Prime integers can be efficiently found using a
primitive test.

3. Compute n = pq,n is used as the modulus for both the
public and private keys
Compute φ(n) = (p – 1)(q – 1), where φ is Euler's
totient function.
Choose an integer e such that 1 < e < φ(n) and greatest
common divisor of (e, φ(n)) = 1; i.e., e and φ(n) are
coprime.

4. e is released as the public key exponent.
5. e having a short bit-length and small Hamming weight

results in more efficient encryption - most commonly
0x10001 = 65,537. However, small values of e (such
as have been shown to be less secure in some
settings.[4]

6. Determine d as:

7.
8. i.e., d is the multiplicative inverse of e mod φ(n).
This is more clearly stated as solve for d given (de) mod
φ(n) = 1.This is often computed using the extended
Euclidean algorithm. d is kept as the private key exponent.

 Lakshmikanth Gurlanka et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6404-6409

www.ijcsit.com 6404

The public key consists of the modulus n and the public (or
encryption) exponent e. The private key consists of the
modulus n and the private (or decryption) exponent d
which must be kept secret.

Encryption: Alice transmits her public key to Bob
and keeps the private key secret. Bob then wishes to send
message M to Alice.
He first turns M into an integer m, such that

by using an agreed-upon reversible
protocol known as a padding scheme. He then computes the
ciphertext corresponding to

.
 This can be done quickly using the method of
exponentiation by squaring. Bob then transmits to Alice.
Note that at least nine values of m will yield a ciphertext c
equal to m,[5] but this is very unlikely to occur in practice.

Decryption:
Alice can recover from by using her private key
exponent via computing

.
Given , she can recover the original message M by
reversing the padding scheme.(In practice, there are more

efficient methods of calculating using the pre computed
values below.)
It is vulnerable to the following attacks
• Timing attacks
• Adaptive chosen ciphertext attacks
• Side-channel analysis attacks

DES:DES (the Data Encryption Standard) is a symmetric
block cipher developed by IBM. The algorithm uses a 56-
bit key to encipher/decipher a 64-bit block of data. The key
is always presented as a 64-bit block, every 8th bit of which
is ignored. However, it is usual to set each 8th bit so that
each group of 8 bits has an odd number of bits set to 1.
The algorithm is best suited to implementation in hardware,
probably to discourage implementations in software, which
tend to be slow by comparison. However, modern
computers are so fast that satisfactory software
implementations are readily available.
DES is the most widely used symmetric algorithm in the
world, despite claims that the key length is too short. Ever
since DES was first announced, controversy has raged
about whether 56 bits is long enough to guarantee security.
The key length argument goes like this. Assuming that the
only feasible attack on DES is to try each key in turn until
the right one is found, then 1,000,000 machines each
capable of testing 1,000,000 keys per second would find
(on average) one key every 12 hours. Most reasonable
people might find this rather comforting and a good
measure of the strength of the algorithm.
Those who consider the exhaustive key-search attack to be
a real possibility (and to be fair the technology to do such a
search is becoming a reality) can overcome the problem by
using double or triple length keys. In fact, double length
keys have been recommended for the financial industry for
many years.

Use of multiple length keys leads us to the Triple-DES
algorithm, in which DES is applied three times. If we
consider a triple length key to consist of three 56-bit keys
K1, K2, K3 then encryption is as follows:
• Encrypt with K1
• Decrypt with K2
• Encrypt with K3
Decryption is the reverse process:
• Decrypt with K3
• Encrypt with K2
• Decrypt with K1
Setting K3 equal to K1 in these processes gives us a double
length key K1, K2. Setting K1, K2 and K3 all equal to K
has the same effect as using a single-length (56-bit key).
Thus it is possible for a system using triple-DES to be
compatible with a system using single-DES.

AES:
The Advanced Encryption Standard (AES) is a
specification for the encryption of electronic data
established by the U.S. National Institute of Standards and
Technology (NIST) in 2001[8]

AES is a block cipher, but it does not use a Feistel
structure. The block size of AES is 128-bit, but the key size
may differ as 128, 192, or 256 bits [9].
Substitution: This method substitutes each byte of the
block in the order of S-box. It provides an invertible
transformation of blocks during encryption, with the
reverse during decryption.
Shifting Rows: This operation performs left circular shifts
of rows 1, 2, and 3 by 1, 2 and 3,
Mix Columns: This method multiplies each column of the
input block with a matrix. The multiplication operation is
just like matrix multiplication, except that it uses a Finite
Field to multiply two elements and performs an XOR
operation instead of addition.
Add Rounded Keys: This operation just applies an XOR
operation to each byte of the input block and the current
weight (key) matrix.

Figure2: the Sub-Bytes step, one of four stages in a round

of AES

2. METHODOLOGY
The proposed algorithm consists of two steps i.e. random
number generator and encryption

STEP-1 GENERATING RANDOM NUMBERS WITH
THE HELP OF LINEAR METHOD AND GENETIC
FUNCTIONS, i.e., CROSSOVER AND MUTATION
RESPECTIVELY:
Assumption about the generation of random numbers: -
1. Representations of the numbers are in Binary.

 Lakshmikanth Gurlanka et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6404-6409

www.ijcsit.com 6405

2. Population Size is fixed to 10.
3. Hence 5 generations are required to generate 50 numbers
if the number of block of characters is 50.
LINEAR METHOD:
 The first generation is created with the help of linear
method and its equation is given below: - The sequence of
random numbers is obtained via the following iterative
equation.
 Xn+1= (a*Xn+c) mod m
Where 1. Xn is the seed value or it is the value of the first
Chromosome of the first generation.
2. m = modulus (m > 0).
 3. a = multiplier (0 <= a < m).
4. c=increment (0 <= c < m).
Once the numbers of the first generation is created the next
generation numbers are generated using the GA operators
CROSSOVER and MUTATION.
After generation 1, the numbers of the next generation is
obtained by CROSSOVER followed by MUTATION. The
pairing up of numbers is done first, with the concept that
for odd type generation pairing is done in one way and for
even type generation in the opposite way. For example,
after the first generation we got the following numbers:-
333, 6578, 8614, 5959, 7922, 8837, 4440, 903, 3693,2686.
2nd Generation: - Pairing up: - (333, 6578), (8614, 5959),
(7922, 8837),(4440, 903), (3693, 2686). For this generation
crossover and mutation will take place let at 6th locus of
the gene of chromosome.
CROSSOVER:
 Binary Representation of the first pair:
 333 = 0000101001101
6578 = 1100110110010
Crossover: 0000100110010 1100111001101
MUTATION:
Mutation: 0000110110010 1100101001101
 = 434 =6577
 Similarly, the other pairs can also be generated in the
following way. Now after generating all the numbers by
applying crossover and mutation on each pair we get;
 434,6577,263,5798,8069,9202,4478,816,3646,2605
After the second generation we continue with the 3rd, 4th
and 5th generation to generate 50 numbers (Each
generation 10 populations) and get the final set of numbers.

STEP-2 ENCRYPTION:
1. Once all the numbers are generated then let this array of
numbers be called SUB_ARRAY and select the first digit
of each number from SUB_ARRAY and a new collection
of numbers is generated and let this collection is called
COLLECTION_ARRAY.
2. Use this numbers from COLLECTION_ARRAY
sequentially for substituting on a one-to-one basis for the
characters of the plain text
Use ASCII values of the plain text characters and subtract
the numbers of COLLECTION_ARRAY from the ASCII
values. For example the message “SOUMYA” the CIPHER
TEXT will be calculated according to following method.
LET SUB_ARRAY = {4167, 10117, 5602, 4867,
4307,2452}
Encryption:

Table1: encryption table

DECRYPTION:

Table2: decryption

3. DATA ANALYSIS
The ten text files of different sizes are taken for testing. The
encryption time, the decryption time and source file sizes
are noted for Triple-DES, RSA and GFC algorithms. Table
1 shows the encryption/decryption time of increasing size
of text files for the proposed GFC, T-DES, and RSA
technique. For any file size proposed GFCT takes less time
to encrypt/decrypt compared to T-DES technique and takes
more or less same time compared to RSA technique. From
table it’s seen that for the file ctext.txt the encryption time
is 1 second whereas T-DES takes 49 seconds to encrypt the
same file. For the same file RSA takes 1 second to encrypt.
Hence it is seen that proposed GFC may be time efficient
relative to RSA and T-DES in terms of text files. Figure 3
shows the pictorial representation of the same.

Figure3: text files comparison

 Lakshmikanth Gurlanka et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6404-6409

www.ijcsit.com 6406

Figure4: executable files comparison

Executable files:
The ten executable files of different sizes are taken for
testing. Time taken for these files to encrypt / decrypt using
proposed GFC is compared with the times taken for RSA
and T-DES. Experiments results are given in Table 2. From
Table 2 it is cleared that the proposed GFC technique takes
less time to encrypt/decrypt compared to T-DES technique
and takes more or less same time compared to RSA
technique for any size of the executable files. The pictorial
effects of the same are shown in Figure4
Studies on DLL Files
Time analysis has also been done for dynamic link
libraries. Ten files of different sizes are taken for
consideration. Table 3 shows the encryption and decryption
taken for proposed GFC, T-DES and RSA techniques. It is
seen from the table that the proposed GFC technique takes
less time to encrypt/decrypt compared to T-DES technique
and takes more or less same time compared to RSA
technique for any size of the executable files. The pictorial
effects of the same are shown in Figure 5
Analysis of Character Frequencies
Distribution of character frequencies are analyzed for text
file for the proposed GFC, RSA and TDES algorithms.
Figure 4 shows the pictorial representation of distribution
of character frequencies for different techniques. Figure
shows the distribution of characters in the source file
“redist.txt”. Figure b and c shows the distribution of
characters in encrypted files both for RSA and T-DES
respectively. Figure d gives the distribution of characters in
encrypted file using the proposed technique GFC. It’s seen
from the picture that in the case of RSA the distribution of
characters in encrypted file is concentrated in a small
region, whereas both for TDES and the proposed technique

GFC frequencies of encrypted file are distributed once the
complete spectrum of characters. From this observation it
may be conclude that the proposed technique may obtain
good security

Figure 5

Tests for Non-Homogeneity
The well accepted parametric tests have been performed to
test the non-homogeneity between source and encrypted
files. The large Chi Square values may confirm the
heterogeneity of the source and encrypted files. Text files
are taken for experiment. The Chi Square test has been
performed using source file and encrypted files for GFC
technique and existing RSA and T-DES techniques. For
non-homogeneity the value of the Chi Square should
increase for the increasing file size. Five files of different
sizes are taken. Further the high Chi Square value may
ensure the non-homogeneity between source and encrypted
files. In all three cases of implementation a good degree of
non-homogeneity observed. So it may be inferred that
proposed GFC technique may ensure optimal security in
transmission. The pictorial representations of Chi Square
values are given in figure 6.

Figure6: analysis

 Lakshmikanth Gurlanka et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6404-6409

www.ijcsit.com 6407

Home screen:

SEED VALUE:

MOD VALUE:

MULTIPLIER VALUE:

CARRY VALUE:

Encryption is successfully done.

After encryption:

After decryption:

4. CONCLUSION
 The proposed technique “GENETIC FUNCTION
TECHNIQUE” presented in this paper is simple and easy
to implement cryptographic system. The generation of
random numbers with the help of genetic functions
provides a unique feature in this technique. This random
numbers are used to encrypt the original message and as
this numbers are randomly generated it is very tough to
break the cipher text. The proposed technique may appear
to produce a computationally non-breakable cipher text.
The result of the Frequency-Distribution tests shows the
fact that the cipher characters are distributed wide enough,
and it is also seen that the source and the encrypted files are
non-homogenous which is established by Chi Square tests.
It produces a competitive Chi Square value while
comparing with the RSA system.

 Lakshmikanth Gurlanka et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6404-6409

www.ijcsit.com 6408

REFERENCES:
[1] Atul Kahate, “Cryptography and Network Security”,Tata McGraw-

Hill, 2nd Edition.
[2] Byron S. Gottfried, “Programming with C” TATA McGraw HILL,

Second Edition, 1998.
[3] Herbert Schildt, “Java: The Complete Reference ", Tata McGraw-

Hill Publishing Company Limited, 5th Edition.
[4] E.Balagurusamy, “Programming with Java”, Tata McGraw-Hill

Publishing Company Limited, 3rd Edition
[5] Ankit Fadia, “Network Security”, Macmillan India Ltd.
[6] William Stallings, “Cryptography and Network Security”, Prentice

Hall, 3rd Edition.
[7] Subhranil Som, Joytsna Kumar Mandal, (2009) “Random Byte

Value Shift (RBVS) Algorithm”, JIS Management Vista, Vol. III,
No. 1, pp.81-88.

[8] Som S., Mitra D., Halder J., (2008) “Session Key Based
Manipulated Iteration Encryption Technique (SKBMIET)”, The
2008 International Conference On Advanced Computer Theory And
Engineering ICACTE 2008), 20-22, December 2008, Phuket,
Thailand.

[9] Som S., Bhattacharyya K.., Roy Guha R., Mandal J.K.,(2009)
“Block Wise Bits Manipulations Technique (BBMT)”, The 2009
International Conference On Advanced Computing, 6-8, August
2009, Tiruchirappalli, India.

[10] Som S., Mandal J. K., (2008) “A Session Key BasedSecure-Bit
Encryption Technique (SBET)”, NationalConference (INDIACom-
2008) on Computing ForNation Development, February 08-09,
2008, New Delhi, India.

[11] Som S., Mitra D., Halder J., (2008) “Secure-Bit Rotate and Swapped
Encryption Technique (SBRSET)”, National Conference on Trend in
Modern Engineering System (IConTiMES 2008), February 23-24,
2008, WB, India

 Lakshmikanth Gurlanka et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6404-6409

www.ijcsit.com 6409

